

Effectiveness of Cloud-based Computer Aided Quality Control System in Korean National Lung Cancer Screening

Ji-Youn Song¹, Yonghyun Kim¹, Nayoung Lee¹, EunKyo Kang¹, Hyae Young Kim², Jin Mo Goo³, Yeol Kim¹

¹National Cancer Control Institute, National Cancer Center, Goyang, South Korea, ²Department of Diagnostic Radiology, National Cancer Center, Goyang, South Korea, ³Department of Radiology, Seoul National University College of Medicine, Seoul, South Korea

Presenting Author: Yonghyun Kim¹

Background

- In 2019, Korean national lung cancer screening program (KNLCS), targeting high-risk smoking population aged 54 to 74 with at least 30 pack-years of smoking history, using low-dose CT (LDCT) was implemented.
- A cloud-based quality control system (CQCS) using computer-aided detection program (CAD) was used to assist radiologists in LDCT lung nodules detection, measurement and categorization.
- In 2021, Artificial Intelligence (AI)-based CAD was launched as a developed version of CQCS.
- This study evaluated effectiveness of CQCS on positive rate and inter-observer variability in KNLCS.

< Cloud-based Quality Control System using Computer Program in KNLCS >

Methods

- Subjects
 - 577 radiologists performed lung cancer screenings in KNLCS nationwide
 - 61 radiologists used CQCS voluntarily
 - 516 radiologists did not use CQCS
- Statistical analysis
 - Compared the quality index between screening units using and not using CQCS in 2019-2021
 - Compared the quality index between screening units before and after using CQCS in 2019-2021
- Primary outcome
 - The quality index: evaluated by positive rates, suspicious rates, and their variability across screening units
 - **Positive rate**: a rate of classified lung nodules requiring either diagnostic procedures or additional follow-up LDCTs and a total number of screenings performed, based on Lung-RADS category 3 or 4
 - Suspicious rate: a rate of classified lung nodules requiring additional follow-up LDCTs and a total number of screenings performed, based on Lung-RADS category 4
 - Variability in positive rates and suspicious rates is evaluated by coefficient of quartile variation (CQV, $\hat{\theta}_{CQV}$.) CQV is defined as a ratio of the difference between the interquartile range and the sum of the 1st and 3rd quartiles and measures the dispersion of a distribution. A higher CQV represents a higher degree of variability.

$$\hat{\theta}_{CQV} = \frac{\hat{\theta}_3 - \hat{\theta}_1}{\hat{\theta}_3 + \hat{\theta}_1}$$

KALC 2022 November 10-11, 2022 Lotte Hotel World, Seoul, Kore

Results

- In CQCS, positive rates were higher by 2.19% (11.40% vs. 9.21%; p<.001) and variability of the positive rates was lower by 0.192 (CQV, 0.261 vs. 0.453).
- When positive rates were compared before and after using CQCS, positive rates increased by 4.90% (11.41% vs. 6.51%; p<.001) and CQV decreased from 0.448 to 0.330 after utilization of CQCS among 29 radiologists.
- After adopting AI-based CAD program in CQCS, positive rates increased by 1.75% (11.71% vs. 9.96%; p=.044) and CQV increased from 0.233 to 0.272 for 35 radiologists.

Figure 1. Comparison of positive rates and variability between screening units using and not using CQCS

KALC 2022 November 10-11, 2022 Lotte Hotel World, Seoul, Korea

Figure 2. Comparison of positive rates and variability between screening units before and after using CQCS

KALC 2022 November 10-11, 2022 Lotte Hotel World, Seoul, Korea

Conclusion

- The CQCS showed effectiveness in assisting in lung nodule detection and lowering variability of screening results across radiologists and screening units.
- Further studies on quality control strategies for newly implemented AI-based CAD are required.

