Prognostic significance of radiomic features from ¹⁸F-FDG PET/CT in patients with stage III non-small cell lung cancer undergoing neoadjuvant chemoradiation therapy followed by surgery

¹Department of Nuclear Medicine, Veterans Health Service Medical Center, Seoul, Korea, ²Department of Preventive Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, Korea, ⁴Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea, ⁶Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea, ⁸Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea, ⁸Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea, ⁸Department of Nuclear Medicine, Seoul, Korea, ⁸Department of Nuclear Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea, ⁸Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea, ⁸Department of Nuclear Medicine, Seoul, Korea, ⁹Department of Nuclear Medicine, Seoul, Seou

Aims

We evaluated prognostic significance of radiomic features extracted from ¹⁸F-FDG PET/CT to predict overall survival (OS) in patients with stage III non-small cell lung cancer (NSCLC) undergoing neoadjuvant chemoradiation therapy followed by surgery, and compared the predictive performance of radiomics from conventional PET parameters.

Methods

We retrospectively enrolled 300 patients with stage III NSCLC who underwent two ¹⁸F-FDG PET/CT scans at initial work-up (PET1) and after neoadjuvant concurrent chemoradiotherapy (PET2). Radiomic features of primary tumor from both PET/CT images were subjected to the least absolute shrinkage and selection operator (LASSO) regression to select the most useful prognostic features. The prognostic significance of LASSO score and conventional PET parameters was assessed by cox proportional hazards regression analysis. To evaluate and compare the prognostic prediction between LASSO score and conventional PET parameters, time-dependent receiver operating characteristic (ROC) curve analysis was performed. Decision curve analysis (DCA) examined the potential net benefit of using LASSO score in the real clinical practice.

Results

The mean follow-up duration was 43.2 months. Eighty four patients (28.0%) had died, and remaining 216 patients (72.0%) were alive. Their sex, histological cell type, T stage, and tumor stage were significant prognostic factors. In conventional PET parameters, metabolic tumor volume (MTV) and total lesion glycolysis (TLG) of each PET1 and PET2 were significantly associated with an increased risk of death. Also, both PET1-LASSO score and PET2-LASSO score were significantly associated with OS. In multivariate cox regression analysis, only PET2-LASSO score was independently significant factor for OS (p < 0.001) after adjusting for clinical characteristics. In time-dependent ROC curve analysis, LASSO score could predict OS better than conventional PET parameters. In addition, the DCA using LASSO score showed a higher net benefit across the entire spectrum of probability thresholds than that of conventional PET parameters.

KALC 2022 November 10-11, 2022 Lotte Hotel World, Seoul, Korea

Jang Yoo¹, Jaeho Lee², Miju Cheon¹, Sang-Keun Woo³, Hojoong Kim⁴, Yong Soo Choi⁵, Hongryull Pyo⁶, Myung-Ju Ahn⁷, Joon Young Choi⁸

-			-		-		-		
Variable		HR	95% CI	p value	Variable		HR	95% CI	<i>p</i> value
Age		1.016	0.991-1.043	0.216	PET1	SUVmax	1.015	0.975-1.056	0.476
Sex	Male vs. female	1.988	1.191-3.316	0.009*		SUVmean	1.023	0.928-1.128	0.653
						MTV	1.005	1.002-1.008	<0.001*
Histology	Non-adc vs. adc	1.595	1.023-2.487	0.039*		TLG	1.002	1.001-1.003	0.005*
T stage	T3/4 vs. T1/2	1.966	1.256-3.079	0.003*		LASSO score	3.164	2.048-4.887	<0.001*
N stage	N2/3 vs. N0/1	1.110	0.154-8.006	0.917	PET2	SUVmax	1.008	0.941-1.080	0.823
Tumor stage	IIIA vs. IIIB/IIIC	2.067	1.329-3.215	0.001*		SUVmean	0.988	0.847-1.153	0.880
						MTV	1.010	1.003-1.016	0.003*
Pathologic response	pCR vs. non-pCR	1.741	0.839-3.615	0.137		TLG	1.003	1.001-1.005	0.036*
	MPR vs. non-MPR	1.045	0.680-1.605	0.841		LASSO score	2.836	2.102-3.826	<0.001*

Table 1. Univariate cox regression analysis for OS

Variable		HR	95% CI	p value	Variable		HR	95% CI	p value
Sex	Male vs. female	1.703	0.977-2.967	0.061	Sex	Male vs. female	1.674	0.960-2.919	0.067
Histology	Non-adc vs. adc	1.309	0.793-2.162	0.293	Histology	Non-adc vs. adc	1.352	0.812-2.249	0.246
T stage	T3/4 vs. T1/2	0.629	0.217-1.822	0.629	T stage	T3/4 vs. T1/2	0.639	0.222-1.844	0.408
Tumor stage	IIIA vs. IIIB/IIIC	1.848	0.686-4.980	0.225	Tumor stage	IIIA vs. IIIB/IIIC	1.863	0.694-5.005	0.217
PET1 MTV		1.001	0.995-1.008	0.712	PET1 TLG		0.999	0.999-1.001	0.883
PET2 MTV		0.994	0.981-1.008	0.393	PET2 TLG		0.999	0.994-1.004	0.670
PET1 LASSO score		1.707	0.907-3.212	0.097	PET1 LASSO score		1.787	0.950-3.362	0.072
PET2 LASSO score		2.297	1.437-3.669	<0.001*	PET2 LASSO score		2.084	1.419-3.060	<0.001*

Table 2. Multivariate cox regression analysis for OS in each MTV and TLG models

Conclusion

The radiomic feature of stage III NSCLC using 18F-FDG PET/CT was independent prognostic factor for the estimation of OS. Moreover, the newly developed LASSO score using radiomic features revealed the better performance for individualized OS estimation than conventional PET parameters.