

ASSESSMENT OF 2-YEAR TREATMENT-RELATED CARDIOVASCULAR TOXICITY RISKS IN NON-SMALL CELL LUNG CANCER PATIENTS UTILIZING ELECTRONIC HEALTH RECORDS

Thi-Ngoc Tran MPH¹, Sanghee Lee PhD¹, Youngjoo Lee MD PhD², Hak Jin Kim MD PhD³, Jin-Ho Choi MD⁴, Jae Won Song MD⁵, Hyunsoon Cho PhD^{6,7}

First author: Thi-Ngoc Tran (ttngoc@ncc.re.kr)

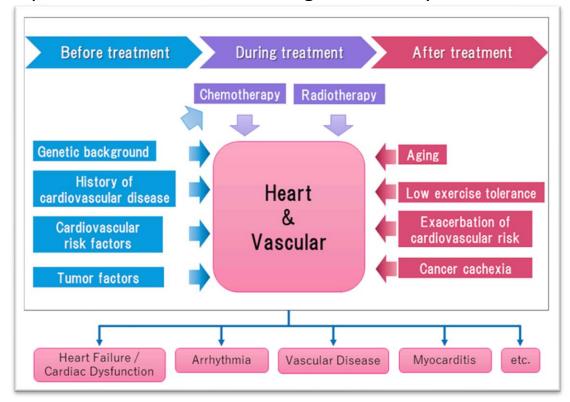
Corresponding author: Hyunsoon Cho (hscho@ncc.re.kr)

¹Departnt of Cancer Control and Population Health, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, Republic of Korea

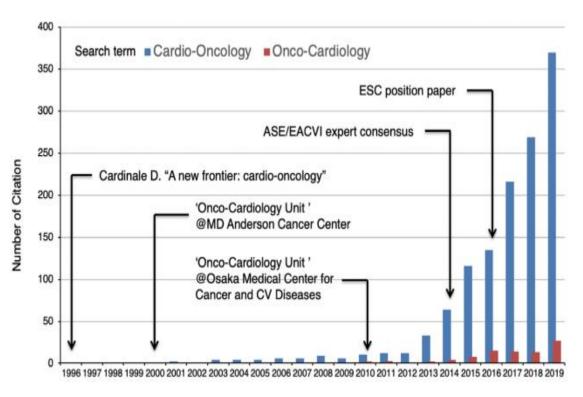
²Division of Hematology and Oncology, Department of Internal Medicine, National Cancer Center, Goyang, Republic of Korea

³Department of Cardiology, Gumdan Top General Hospital, Incheon, Republic of Korea

⁴Department of Thoracic Surgery, Research Institute and Hospital, National Cancer Center, Goyang, Republic of Korea


⁵Center for Lung cancer, Research Institute and Hospital, National Cancer Center, Goyang, Republic of Korea

⁶Department of Cancer AI and Digital Health, National Cancer Center Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Rep


⁷Integrated Biostatistics Branch, Division of Cancer Data Science, Research Institute, National Cancer Center, Goyang, Republic of Korean and Longer

1. Background and objectives

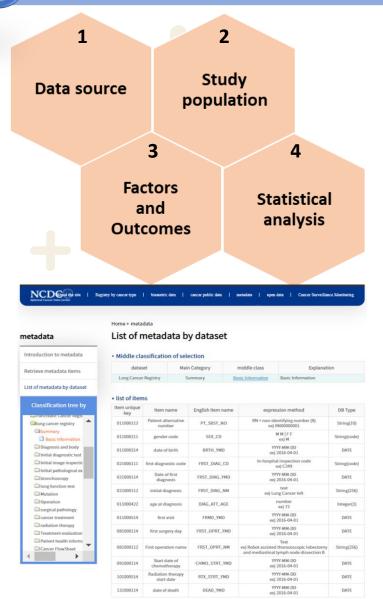
- Cancer treatment-related cardiovascular disease, or cardiovascular (CV) toxicity caused by diversified cancer treatments, was discovered decades ago and has become more popular in recent studies.
- **Cardio-oncology or onco-cardiology** was developed as the interdisciplinary field of oncologists and cardiologists to prevent, monitor, and manage CV toxicity based on real-world evidence to improve cancer care and cancer survivorship.

Figure. The multiple factors involved in the development of cancer treatment-related CV diseases before, during, and after cancer treatment [1]. **KALC 2022** November 10-11, 2022 Lotte Hotel World, Seoul, Korea

Figure. Number of PubMed citations since 1996 for the terms "Cardio-Oncology" and "Onco-Cardiology" by year [2].

1. Background and objectives

Studies about CV disease risks in cancer survivors


- Study in UK [3]: there was increased mortality related to CV diseases, such as pericarditis, venous thromboembolic disease, arrhythmias, and ischemic heart disease in patients with LC
- -> comparing general CV disease risk between cancer patients and the general non-cancer population
- Study in Korea [4]: risks of coronary heart disease, myocardial infarction, and stroke among surgery LC patients were higher than in the non-cancer population.

Diverse effects of the treatment received on the occurrence of CV toxicities in LC patients haven't been discovered.

Objectives

To assess the **cumulative incidence** of various CV toxicity types and associated **risks** in non-small cell lung cancer (NSCLC) patients **by treatment therapy**.

2. Method

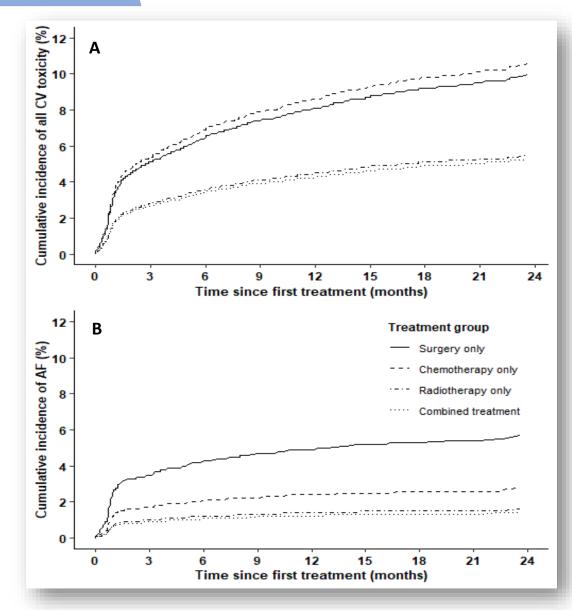
https://www.cancerdata.kr/main.do

KALC 2022 November 10-11, 2022 Lotte Hotel World Se

- Clinical Research Data Warehouse, a database of electronic medical records created at the National Cancer Center (NCC), Korea in 2021.
- 7,868 patients aged 40+, newly diagnosed with NSCLC only between January 2007 and December 2018 had cancer treatment at the NCC within four months after their cancer diagnosis.
- **3. Outcomes**: The **nine different CV toxicities**: secondary hypertension, atrial fibrillation and flutter, cerebrovascular disease, ischemic heart disease, venous thromboembolism, etc. **Variables**: demographic, SEER stage, ECOG performance status, Treatment therapy.
- 4. The 2-year cumulative incidence of CV toxicity and Fine-Gray subdistribution hazard models by treatment was estimated with death as competing event.

3. Results - Characteristics of CV toxicities

Table 1. The proportion of cardiovascular toxicity types by treatment group.


		Treatment				
CV toxicity type	Total n=7,868 n (col %)	Surgery only n=1,699 n (col %)	Chemotherapy only n=2,497 n (col %)	Radiotherapy only n=393 n (col %)	Combined treatment n=3,279 n (col %)	p-value
AF (atrial fibrillation and flutter)	209 (3)	92 (5.4)	66 (2.6)	6 (1.5)	45 (1.4)	<.001
VTE (venous thromboembolism)	156 (2)	44 (2.6)	60 (2.4)	4 (1.0)	48 (1.5)	0.008
CeVD (cerebrovascular disease)	115 (1)	11 (0.7)	66 (2.6)	6 (1.5)	32 (1.0)	<.001
IHD (ischemic heart disease)	78 (1)	10 (0.6)	39 (1.6)	4 (1.0)	25 (0.8)	0.005
Cardial (pericardial effusion, cardiac tamponade)	54 (1)	7 (0.4)	28 (1.1)	2 (0.5)	17 (0.5)	0.016
CMP, HF (cardiomyopathy due to chemotherapeutic agents and heart failure)	22 (0)	5 (0.3)	8 (0.3)	1 (0.3)	8 (0.2)	0.956
Secondary HTN	16 (0)	0 (0.0)	11 (0.4)	0 (0.0)	5 (0.2)	0.009
ATE (arterial embolism and thrombosis)	8 (0)	2 (0.1)	3 (0.1)	0 (0.0)	3 (0.1)	0.905
Others	24 (0)	15 (0.9)	6 (0.2)	0 (0.0)	3 (0.1)	<.001
All CV toxicity	611 (8)	162 (9.5)	257 (10.3)	21 (5.3)	171 (5.2)	<.001

About 8% developed CV toxicities 2 years after cancer diagnosis.

The most common types: AF (3%), VTE (2%), CeVD (1%) and IHD (1%).

3. Results - *Cumulative incidence of CV toxicities*

- The overall CV toxicity was the highest in the chemotherapy population (2-year cumulative incidence of 10.6%).
- The surgery population showed the highest AF (5.7%).

Figure 1. Cumulative incidence of all CV toxicity, AF by treatment groups. (A) All CV toxicities; (B) Atrial fibrillation and flutter

- Individuals with chemotherapy were significantly related to CeVD (sHR 4.12, 95% CI 1.66-10.23).
- Risk of AF was significantly lower among patients with chemotherapy (sHR 0.58), radiotherapy (sHR 0.29) and combined treatment (sHR 0.20) than those with surgery.
 - A. All CV toxicity (no. event=611)

KALC 2022

B. Atrial fibrillation and flutter(no. event =209)

C. Cerebrovascular disease (no. event =115)

Variable	All CV toxicity	SHR (95% CI)	Variable	AF	SHR (95% CI)	Variable	CeVD	SHR (95% CI)
Age (Ref. Age 40-54)	:		Age (Ref. Age 40-54)	:		Age (Ref. Age 40-54)	:	
Age 55-64	_	1.33 (1.02-1.73)	Age 55-64		1.83 (1.04-3.21)	Age 55-64		1.22 (0.64-2.33)
Age 65-74	· •	1.31 (0.99-1.73)	Age 65-74		1.88 (1.06-3.34)	Age 65-74	÷	1.15 (0.60-2.23)
Age 75+	_ _	1.03 (0.73-1.44)	Age 75+		1.18 (0.61-2.31)	Age 75+	<u> </u>	1.01 (0.46-2.21)
Gender (Ref. Female)		1.29 (1.00-1.67)	Gender (Ref. Female)	•		Gender (Ref. Female)	•	1.57 (0.86-2.87)
Smoking (Ref. No)		1.16 (0.86-1.57)	Smoking (Ref. No)		1.30 (0.72-2.33)	Smoking (Ref. No)		0.87 (0.44-1.72)
Drinking (Ref. No)		0.97 (0.80-1.18)	Drinking (Ref. No)		0.83 (0.59-1.15)	Drinking (Ref. No)		1.23 (0.78-1.94)
HTN (Ref. No)	-	1.20 (1.00-1.42)	HTN (Ref. No)		1.28 (0.96-1.72)	HTN (Ref. No)	<u>۰</u>	1.46 (0.96-2.20)
Diabetes (Ref. No)	- -	1.02 (0.83-1.25)	Diabetes (Ref. No)	_ . _	0.87 (0.61-1.24)	Diabetes (Ref. No)	+	1.17 (0.73-1.88)
ECOG group (Ref. ECOG 0)			ECOG group (Ref. ECOG 0)			ECOG group (Ref. ECOG 0))	
ECOG 1	_ _	1.38 (1.09-1.73)	ECOG 1	_	2.12 (1.39-3.22)	ECOG 1	÷	1.13 (0.66-1.91)
ECOG 2	÷	1.18 (0.89-1.56)	ECOG 2	•		ECOG 2	÷	0.90 (0.49-1.65)
LC type (Ref. Adenocarcinoma)			LC type (Ref. Adenocarcinon	na)		LC type (Ref. Adenocarcin	noma)	
Squamous cell carcinoma	_ •	1.26 (1.03-1.55)	Squamous cell carcinoma		1.76 (1.25-2.48)	Squamous cell carcinoma	•	0.70 (0.42-1.15)
Others	_ _	1.04 (0.82-1.31)	Others	· · · · · · · · · · · · · · · · · · ·	1.43 (0.96-2.14)	Others	*	0.83 (0.49-1.41)
SEER stage (Ref. Localized)			SEER stage (Ref. Localized)			SEER stage (Ref. Localize	d)	
Regional	·	1.80 (1.33-2.44)	Regional		1.81 (1.19-2.78)	Regional	•	2.44 (0.90-6.61)
Distant		1.61 (1.12-2.31)	Distant	•	1.51 (0.84-2.71)	Distant		1.56 (0.53-4.61)
Treatment (Ref. Surgery)			Treatment (Ref. Surgery)			Treatment (Ref. Surgery)		
Chemotherapy only		1.13 (0.82-1.56)	Chemotherapy only	-	0.58 (0.34-0.98)	Chemotherapy only		- 4.12 (1.66-10.2
Radiotherapy only		0.58 (0.35-0.98)	Radiotherapy only	—	0.29 (0.12-0.70)	Radiotherapy only	•	2.33 (0.68-8.03)
Combined treatment	+	0.41 (0.31-0.55)	Combined treatment	*	0.20 (0.13-0.31)	Combined treatment		1.20 (0.51-2.80)
0 1 2 3			0 1 2 3 4			0 4 8 12		
SHR (95% CI)			SHR (95% CI)			SHR (95% CI)		

Figure 2. Forest plot for risks of all CV toxicities, IHD, AF, CeVD, VTE in total NSCLC population (n=7,868)*

Notes: In 'sHR (95% CI)' column, cell with p-value \leq .05 were bold.

The full model included: Age, gender, working status, education, smoking, drinking, hypertension, diabetes, BMI, ECOG, LC types, SEER stage, treatment.

Acknowledgements

This work was supported by the National Cancer Center of Korea (Grant No. NCC-2110450-2, NCC-2210880-1)

References

- 1. Nonaka M, Hosoda H, Uezono Y. Cancer treatment-related cardiovascular disease: Current status and future research priorities. Biochem Pharmacol. 2021 Aug;190:114599.
- 2. Kadowaki H, Akazawa H, Ishida J, Komuro I. Cancer Therapeutics-Related Cardiac Dysfunction Insights From Bench and Bedside of Onco-Cardiology. Circ J. 2020 Aug 25;84(9):1446-53.
- 3. Strongman H, Gadd S, Matthews A, Mansfield KE, Stanway S, Lyon AR, et al. Medium and long-term risks of specific cardiovascular diseases in survivors of 20 adult cancers: a population-based cohort study using multiple linked UK electronic health records databases. Lancet. 2019 Sep 21;394(10203):1041-54.
- 4. Yoon DW, Shin DW, Cho JH, Yang JH, Jeong SM, Han K, et al. Increased risk of coronary heart disease and stroke in lung cancer survivors: A Korean nationwide study of 20,458 patients. Lung Cancer. 2019 Oct;136:115-21.

