

Expanded Access Program (EAP) Use of Pralsetinib in advanced **NSCLC** with **RET** rearrangement

Young-Kyung Jeon¹, Se-Hoon Lee¹, Hyun Ae Jung¹, Sehhoon Park¹ Jong-Mu Sun^{1,} Jin Seok Ahn¹, Myung-Ju Ahn¹, Keunchil Park¹

¹ Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea

EAP Use of Pralsetinib in advanced NSCLC with RET rearrangement

Young-Kyung Jeon¹, Se-Hoon Lee¹, Hyun Ae Jung¹, Sehhoon Park¹, Jong-Mu Sun¹, Jin Seok Ahn¹, Myung-Ju Ahn¹, Keunchil Park¹ ¹ Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea

Introduction

Results

- Rearranged during transfection (RET) gene rearrangement
 - Well-known driver event in non-small cell lung cancer (NSCLC)
 - \checkmark Lead to the generation of oncogenic intracellular RET fusion proteins capable of ligand-independent activation
 - ✓ RET fusions are present in 1–2% of NSCLCs and are an important therapeutic target
- Multikinase inhibitors with anti-RET activity
 - Such as cabozantinib, vandetanib, and Lenvatinib have been investigated in early clinical trials of RET-positive NSCLCs
 - \checkmark Showed modest clinical activity with high rates of treatment-related toxicity
- Pralsetinib
 - ✓ Potent and selective inhibitor of RET kinase
 - ✓ Has shown its efficacy in oncogenic RET altered tumors

Objective & endpoints

- Objective
 - Evaluate the efficacy and safety of EAP use of pralsetinib in pretreated, advanced NSCLC patients with RET-rearrangement in single medical center
- Endpoints
 - Primary endpoint: investigator-assessed overall response rate (ORR) per RECIST version 1.1.
 - ✓ Secondary endpoints: duration of response (DOR), progression-free survival (PFS), overall survival (OS) and safety profiles.

Study design & evaluation

- Study design
 - Retrospective, non-randomized, open label, single-arm, single center, phase II study
- Evaluation
 - ✓ Patients with advanced NSCLC received pralsetinib 400 mg once daily as part of the EAP at Samsung Medical Center, South Korea
 - Baseline characteristics, treatment history, efficacy and safety outcomes were evaluated through retrospective chart review

- Between April 2020 to September 2021, 27 patients with NSCLC received pralsetinib
- Seven patients who died within three months and 1 patient who arbitrarily refrained after 7 days were excluded from this analysis

Baseline characteristics Waterfall plot Ν % (range) Median (range) 51 ≥65 Age 2 10.5 17 <65 89.5 -10.0 Male 31.6 6 Sex 13 Female 68.4 16 84.2 -20.0 Never smoker Ex-smoker 2 10.5 Smoking Current smoker 1 5.3 -30.0 Adenocarcinoma 16 84.2 Histology Adenosquamous carcinoma 2 10.5 RET-KIF5B Undifferentiated malignant tumor 5.3 -40.0 RET-CCDC6 EGFR No 19 100 No ALK 19 100 RET-ERC No 13 68.4 -50.0 ROS1 RET-NCOA4 Unknown 6 31.6 PD-L1 (22C3) CDx Median 0.5 (0-90)-60.0 PD-L1 (SP263) Median 0.5 (0-40)No 17 89.5 Surgery Overall response Yes 2 10.5 Prior palliative chemotherapy lines Median 2 (1-8)Liver 2 10.5 Distant metastasis Brain 31.6 at chemotherapy start 6 Follow up duration Median 14 10.7-17.3 No 10 52.6 Dose reduction Yes 9 47.4 No 12 63.2 Dose interuption Yes 36.8

Hematologic adverse events

	Any	Grade 1-2	Grade 3-4	
Leukopenia	12 (63.2%)	10 (52.6%)	2 (10.5%)	Edema
Anemia	17 (89.5%)	11 (57.9%)	6 (31.6%)	Pneumonitis
Thrombocytopenia	13 (68.4%)	11 (57.9%)	2 (10.5%)	General weakness
Neutropenia	13 (68.4%)	10 (52.6%)	3 (15.8%)	Hypertension
Elevated AST	18 (94.7%)	16 (84.2%)	2 (10.5%)	Diarrhea
Elevated ALT	17 (89.5%)	14 (73.7%)	3 (15.8%)	Fever
Elevated ALP	8 (42.1%)	6 (31.6%)	2 (10.5%)	PTE
Bilirubinemia	4 (21.1%)	4 (21.1%)	0 (0.0%)	Extrapulmonary tuberculosis
Elevated Creatinine	8 (42.1%)	8 (42.1%)	0 (0.0%)	Stomatitis
Elevated CK	3 (37.5%)	3 (37.5%)	0 (0.0%)	Constipation
Hyponatremia	10 (52.6%)	9 (56.2%)	1 (6.3%)	QT prolongation

	N	%
Overall response rate	11	57.9
Partial response	11	57.9
Stable disease	8	42.1
Progression	0	0
_		
_		

Conclusion

42.1

36.8

15.8

15.8

10.5

10.5

10.5

10.5

5.3

5.3

5.3

8

7

3

2

2

2

2

1

Non-hematologic adverse events

Progression free survival

Median PFS: 22.2 months

(95% CI 5.0-39.4)

 Pralsetinib was found to have clinical benefit which is consistent with a pivotal study, when used in EAP in RET-rearranged NSCLC patients